69 research outputs found

    Ab-initio study of structure and dynamics properties of crystalline ice

    Full text link
    We investigated the structural and dynamical properties of a tetrahedrally coordinated crystalline ice from first principles based on density functional theory within the generalized gradient approximation with the projected augmented wave method. First, we report the structural behaviour of ice at finite temperatures based on the analysis of radial distribution functions obtained by molecular dynamics simulations. The results show how the ordering of the hydrogen bonding breaks down in the tetrahedral network of ice with entropy increase in agreement with the neutron diffraction data. We also calculated the phonon spectra of ice in a 3x1x1 supercell by using the direct method. So far, due to the direct method used in this calculation, the phonon spectra is obtained without taking into account the effect of polarization arising from dipole-dipole interactions of water molecules which is expected to yield the splitting of longitudinal and transverse optic modes at the Gamma-point. The calculated longitudinal acoustic velocities from the initial slopes of the acoustic mode is in a reasonable agreement with the neutron scatering data. The analysis of the vibrational density of states shows the existence of a boson peak at low energy of translational region a characteristic common to amorphous systems.Comment: International symposium on structure and dynamics of heterogeneous system SDHS'0

    The effect of rock particles and D2O replacement on the flow behaviour of ice

    Get PDF
    Ice–rock mixtures are found in a range of natural terrestrial and planetary environments. To understand how flow processes occur in these environments, laboratory-derived properties can be extrapolated to natural conditions through flow laws. Here, deformation experiments have been carried out on polycrystalline samples of pure ice, ice–rock and D2O-ice–rock mixtures at temperatures of 263, 253 and 233 K, confining pressure of 0 and 48 MPa, rock fraction of 0–50 vol.% and strain-rates of 5 × 10−7 to 5 × 10−5 s−1. Both the presence of rock particles and replacement of H2O by D2O increase bulk strength. Calculated flow law parameters for ice and H2O-ice–rock are similar to literature values at equivalent conditions, except for the value of the rock fraction exponent, here found to be 1. D2O samples are 1.8 times stronger than H2O samples, probably due to the higher mass of deuterons when compared with protons. A gradual transition between dislocation creep and grain-size-sensitive deformation at the lowest strain-rates in ice and ice–rock samples is suggested. These results demonstrate that flow laws can be found to describe ice–rock behaviour, and should be used in modelling of natural processes, but that further work is required to constrain parameters and mechanisms for the observed strength enhancement

    Anomalies in water as obtained from computer simulations of the TIP4P/2005 model: density maxima, and density, isothermal compressibility and heat capacity minima

    Full text link
    The so-called thermodynamic anomalies of water form an integral part of the peculiar behaviour of this both important and ubiquitous molecule. In this paper our aim is to establish whether the recently proposed TIP4P/2005 model is capable of reproducing a number of these anomalies. Using molecular dynamics simulations we investigate both the maximum in density and the minimum in the isothermal compressibility along a number of isobars. It is shown that the model correctly describes the decrease in the temperature of the density maximum with increasing pressure. At atmospheric pressure the model exhibits an additional minimum in density at a temperature of about 200K, in good agreement with recent experimental work on super-cooled confined water. The model also presents a minimum in the isothermal compressibility close to 310K. We have also investigated the atmospheric pressure isobar for three other water models; the SPC/E and TIP4P models also present a minimum in the isothermal compressibility, although at a considerably lower temperature than the experimental one. For the temperature range considered no such minimum is found for the TIP5P model.Comment: 23 pages, 8 figure

    Improved measurement of the K+->pi+nu(nu)over-bar branching ratio

    Get PDF
    An additional event near the upper kinematic limit for K+-->pi(+)nu(nu) over bar has been observed by experiment E949 at Brookhaven National Laboratory. Combining previously reported and new data, the branching ratio is B(K+-->pi(+)nu(nu) over bar)=(1.47(-0.89)(+1.30))x10(-10) based on three events observed in the pion momentum region 211<P<229 MeV/c. At the measured central value of the branching ratio, the additional event had a signal-to-background ratio of 0.9

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies

    Amorphous on the surface

    No full text
    • …
    corecore